Notiz / Note Synthese und Struktur von (R₃P)Ni(1,6-Heptadiin)-Komplexen

Bernd Proft, Klaus-Richard Pörschke*, Frank Lutz und Carl Krüger

Max-Planck-Institut für Kohlenforschung, Postfach 101353, D-45466 Mülheim a.d. Ruhr

Eingegangen am 26. Oktober 1993

Key Words: 1,6-Diynes / Nickel complexes

Synthesis and Structure of (R₃P)Ni(1,6-Heptadiyne) Complexes

Displacement of the alkene ligand in Ligand-Ni(0)(1,6-diene) complexes by 1,6-heptadiyne, the parent 1,6-diyne, affords the complexes $(Me_3P)Ni(\eta^2,\eta^2-C_7H_8)$ (1) and $(Ph_3P)Ni(\eta^2,\eta^2-C_7H_8)$ (2). According to an X-ray structure analysis of the PMe₃ derivative 1 the nickel atom is ideally trigonal-planar coordinated by the phosphane and both C=C bonds. The increased stability of the complexes as compared

Komplexe von Nickel(0) mit Ethin oder 1-Alkinen sind unter dem Gesichtspunkt der Reppe-Chemie von besonderem Interesse. In diesem Zusammenhang haben wir über Verbindungen mit Ethin^[1,2], Propin^[3], Phenylacetylen^[3] und Butadiin^[4] berichtet. Ligand-Ni(0)*bis*(alkin)-Komplexe derartiger Alkine, z.B. L-Ni-(HC=CH)₂ [L = PMe₃, PEt₃^[2], PPh₃, P(OPh)₃^[5], P(OC₆H₃-Me₂)₃^[6]], stellen äußerst schwer zugängliche und leicht zersetzliche Verbindungen dar. Bei der Entwicklung geeigneter Vorkomplexe zu ihrer Synthese erkannten wir kürzlich in der 1,6-Stellung der funktionellen Gruppen der Alken-Komplexe Ligand-Nickel(0)-(*1,6-Heptadien*)^[7] ein wichtiges Stabilisierungsprinzip für trigonalplanare Nickel(0)-Komplexe^[8]. Dieses konnte jetzt auf Alkine übertragen werden, so daß sich analoge Ligand-Nickel(0)(*1,6-Heptadiin*)-Komplexe herstellen und strukturell charakterisieren ließen.

Die farblose Pentan-Lösung des Diallylether-Komplexes (Me₃P)-Ni(η^2 , η^2 -C₆H₁₀O) (A)^[5] färbt sich bei Zugabe von 1,6-Heptadiin bei -30° C rot, und bei -78° C scheiden sich rote Nadeln^[9] von 1 (80%) ab. Analog reagiert gelbes (Ph₃P)Ni(η^2 , η^2 -C₇H₁₂)^[7] mit 1,6-Heptadiin in Ether bei 0°C zu einer hellbraunen Lösung, und bei -78° C kristallisieren farblose Nadeln^[9] von 2 (72%).

$$(Me_{3}P)Ni(\eta^{2},\eta^{2}-C_{7}H_{8})$$
(Ph₃P)Ni($\eta^{2},\eta^{2}-C_{7}H_{8}$)
1 2

1 und 2 verpuffen heftig bei 20 bzw. 50°C. Die THF-Lösungen färben sich bei 20°C langsam braun, und es scheidet sich ein braunes Polymeres ab; ein definierter Produkt-Komplex ist nicht isolierbar. Im Massenspektrum (10°C) von 1 beobachtet man das Molekül-Ion m/z = 226 (97%), das unter Phosphan-Freisetzung zum Basis-Ion $[Ni(C_7H_8)]^+$ (150) fragmentiert (2 ist nicht unzersetzt verdampfbar). Der Grund für die höhere thermische Stabilität der 1,6-Heptadiin-Derivate im Vergleich zu L-Ni(HC≡CH)₂-Komplexen [Zers. für L = PMe₃: -60° C; PPh₃: 0° C] ist darin zu sehen, daß die substituierten C≡C-Bindungen weniger reaktionsfähig sind als Ethin und daß ihre Trimethylen-Verbrückung einen starken Chelateffekt hervorruft. Das IR-Spektrum (KBr, -70°C) von 1 zeigt =C-H- und C=C-Streckschwingungsbanden des 1,6-Heptadiin-Liganden bei den Wellenzahlen 3146 (schwach) und 3120 cm⁻¹ bzw. 1846 (schwach) und 1823 cm⁻¹. Die Aufspaltung der Banden wird auf eine interne Kopplung der genannten Alkin-Schwingungen im Komplex zurückgeführt. 2 weist ein diesbezüglich ähnliches IR-Spektrum auf.

Im ¹H-NMR-Spektrum von 1 erhält man für den 1,6-Heptadiin-Liganden^[10] drei Signale bei $\delta = 5.52$ [³*J*(PH) = 28 Hz, \equiv CH], 2.61 (\equiv CCH_aH_b-) und 1.70 (-CH_aH_b-). Die ³*J*(PH)-Kopplung der acetylenischen Protonen ist angesichts der *quasi-cis*-Stellung der Alkin-CH-Gruppen zu Phosphor unerwartet groß^[11]. Das Fehlen einer Aufspaltung der CH_aH_b-Signale (H_a, H_b wären bei starrer Ringkonformation in unterschiedlicher chemischer Umgebung) zeigt, daß die Energiebarriere eines Ringkonformationsaustauschs in Lösung niedrig ist. Im ¹³C-NMR-Spektrum liefert der 1,6-Heptadiin-Ligand von 1 vier Signale, von denen das Signal der \equiv CH-Gruppen ($\delta = 86.0$) die Kopplung ¹*J*(CH) = 224 Hz aufweist, die gegenüber der des freien Alkins um ca. 20 Hz verringert ist. Der Wert entspricht denen der Komplexe L-Ni(HC \equiv CH)₂ und ist mit einer relativ geringen Umhybridisierung sp—sp² der Alkin-C-

Chem. Ber. 1994, 127, 653-655

© VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

0009-2940/94/0404-0653 \$ 10.00+.25/0

Atome vereinbar. Analoge ¹H- und ¹³C-NMR-Spektren beobachtet man für 2. Die Spektren lassen auf einen trigonal-planaren Nikkel(0)-Komplex schließen, dessen Koordinationsstellen vom Phosphan-Liganden und den Dreifachbindungen des chelatisierenden 1,6-Heptadiin-Liganden eingenommen werden.

Zur näheren Bestimmung der Bindungsverhältnisse der L-Ni(0)(1.6-Heptadiin)-Komplexe wurde von 1 als einfachstem Vertreter ($L = PMe_3$) eine Einkristall-Strukturanalyse^[12] durchgeführt; die Molekülstruktur ist in Abb. 1 dargestellt. In 1 ist das Nickel-Atom von dem Phosphor-Atom und den C≡C-Bindungen des 1,6-Diins exakt trigonal-planar umgeben. Neben den Dreifachbindungs-C-Atomen C4, C5, C9, C10 liegen auch die benachbarten Methylen-C-Atome C6 und C8 in der Koordinationsebene des Nikkels; das mittlere Methylen-C-Atom C7 ist aus der Komplexebene 0.69(2) Å hervorgehoben. Der von den Mittelpunkten der C=C-Bindungen (D1, D2) am Nickel eingeschlossene Winkel D1-Ni-D2 beträgt 125°. Der Abstand Ni-P 2.156(1) Å entspricht Erfahrungswerten (2.16-2.18 Å); der Abstand des Nickels zu den Dreifachbindungs-C-Atomen beträgt 1.93I(2) Å (gemittelt) und ist größer als der im Bis(phosphan)nickel(0)-Komplex (Ph₃P)₂Ni(HC≡CH) (1.88 Å)^[1]. Die C≡C-Bindungslängen betragen 1.241(3) Å (gemittelt) und stimmen mit der Ethin-C=C-Bindungslänge in (Ph₃P)₂Ni(HC=CH) (1.24 Å)^[1] überein; die Bindungen sind gegenüber einer unkomplexierten C≡C-Bindung (Ethin: 1.18 Å^[13]) wenig aufgeweitet.

Abb. 1. Struktur von $(Me_3P)Ni(\eta^2,\eta^2-C_7H_8)$ (1) im Kristall. Ausgewählte Abstände [Å] und Winkel [°]: Ni-P 2.156(1), C4-C5 1.243(3), C5-C6 1.481(3), C6-C7 1.528(3), C7-C8 1.514(3), (Ni,P,C2) 106.2(4)

Setzt man die 1,6-Heptadiin-Komplexe zu 1,6-Heptadien-Derivaten in Relation, so stimmt für 1 der Winkel D1-Ni-D2 mit dem analogen Winkel von (Ph₃P)Ni(η^2 , η^2 -C₇H₁₂) (125.9°)^[7] überein. Hieraus läßt sich für den 1,6-Heptadiin-Liganden in L-Ni (η^2, η^2) -C7H8)-Komplexen eine ebenso spannungsarme Chelat-Koordination^[14] wie für den 1.6-Heptadien-Liganden in L-Ni(η^2 , η^2 -C₇H₁₂)-Komplexen ableiten; dieser Befund ist an einem Modell leicht verifizierbar. Durch die quasi spannungsfreie Koordination von 1,6-Heptadiin wie 1,6-Heptadien am L-Ni(0)-Rumpf kommt der (stabilisierende) Chelateffekt voll zum tragen. Der Ni-C-Abstand in 1 ist deutlich kürzer als in $(Ph_3P)Ni(\eta^2,\eta^2-C_7H_{12})$ (2.01) Å). Hierin spiegelt sich die bereits aus der Synthese von 1 und 2 aus den 1,6-Dien-Vorläuferkomplexen zu erkennende festere Komplexierung der 1.6-Heptadiin-Dreifachbindungen im Vergleich zu 1,6-Dien-Doppelbindungen wider. 1 und 2 erscheinen uns als wichtige Modell-Komplexe für zahlreiche Übergangsmetall-vermittelte 1,6-Heptadiin-Umsetzungen^[15,16].

Wir danken Herrn Dr. K. Seevogel für die IR-Spektren.

Experimenteller Teil

1: Zu der farblosen Lösung von 2.00 g (8.58 mmol) (Me₃P)- $Ni(\eta^2, \eta^2-C_6H_{10}O)$ (A)^[5] in 10 ml Pentan werden bei -30°C 0.79 g (8.58 mmol) 1,6-Heptadiin in 5 ml Pentan gehebert, wobei sich die Lösung rot färbt. Beim Abkühlen auf - 78°C fallen rote, nadelförmige Kristalle aus, die man mittels Kapillarheber von der Mutterlauge befreit, zweimal mit kaltem Pentan wäscht und bei -30°C im Ölpumpenvakuum trocknet. Ausb. 1.56 g (80%); Schmp. (Zers.) 20°C. – IR (KBr, -70°C): $\tilde{v} = 3146 \text{ cm}^{-1}$ (schwach), 3120 (v, =C−H), 1846 (schwach), 1823 (v, C=C). – MS (70 eV, 10°C), m/z(%): 226 (97) $[M]^+$, 150 (100) $[Ni(C_7H_8)]^+$. – ¹H-NMR (400 MHz, $[D_8]$ THF, -30° C, TMS): $\delta = 5.52 [^3J(PH) = 28.0 \text{ Hz}, 2H, =CH],$ 2.61 (4H, \equiv CCH₂-), 1.70 (2H, -CH₂-), Alkin; 1.38 (9H, PCH₃). - ¹³C-NMR (100.6 MHz, [D₈]THF, -30°C, TMS): δ = 113.1 $[{}^{2}J(PC) = 15.2 \text{ Hz}, \equiv C-], 86.0 [2C, {}^{1}J(CH) = 224, {}^{2}J(PC) = 13.4$ Hz, =CH), 29.95 [1C, ${}^{4}J(PC) = 11.5$ Hz, $-CH_{2}$ -], 18.9 [2C, ${}^{3}J(PC) < 1$ Hz, $\equiv C - CH_{2} - 1$, Alkin, bemerkenswerterweise ist ${}^{3}J(PC) \ll {}^{2}J(PC), {}^{4}J(PC); 18.2 (3C, PCH_{3}). - {}^{31}P-NMR (162 \text{ MHz},$ $[D_8]THF$, $-30^{\circ}C$, wäßrige H_3PO_4): $\delta = -3.7. - C_{10}H_{17}NiP$ (226.9): ber. C 52.93, H 7.55, Ni 25.87, P 13.65; gef. C 53.40, H 7.61, Ni 25.42, P 13.40.

Kristallographische Daten von 1: Formel C₁₀H₁₇NiP, Molmasse 226.9 g/mol; Kristallgröße $0.26 \times 0.34 \times 0.20$ mm; a = 10.997(2), b = 11.022(2), c = 9.076(1) Å, $\alpha, \beta, \gamma = 90^{\circ}, V = 1100.1$ Å³, $\rho_{ber} = 100.1$ Å³, ρ_{ber 1.37 gcm⁻³, $\mu = 18.64$ cm⁻¹, F(000) = 480 e, Z = 4, Kristallsystem orthorhombisch, Raumgruppe P212121 (Nr. 19), Enraf-Nonius-CAD4-Diffraktometer, $\lambda = 0.71069$ Å, Meßmethode $\omega - 2\Theta$, 5291 gemessene Reflexe (+h, $\pm k$, $\pm l$), [(sin Θ)/ λ]_{max} = 0.65 Å⁻¹, 2514 unabhängige und 2444 beobachtete Reflexe $[I > 2\sigma(I)]$, 178 verfeinerte Parameter, Schweratom-Methode, H-Positionen berechnet, $R = 0.021, R_w = 0.027 [w = 1/\sigma^2(F_o)], R_{av} = 0.04$, maximale Restelektronendichte 1.19 eÅ⁻³.

2: Zu der gelben Lösung von 350 mg (0.84 mmol) (Ph₃P)Ni- $(\eta^2, \eta^2 - C_7 H_{12})^{[7]}$ in 5 ml Ether werden bei -30° C 0.10 ml (0.87) mmol) 1,6-Heptadiin pipettiert. Die Lösung wird kurzzeitig auf 0°C erwärmt, wobei sie sich hellbraun färbt. Beim erneuten Abkühlen auf -78°C fallen feine farblose nadelförmige Kristalle aus, die wie 1 isoliert werden. Ausb. 250 mg (72%); Schmp. (Zers.) 50°C. - IR (KBr, -60°C): \tilde{v} = 3153 cm⁻¹ (schwach), 3142 (v, ≡C-H), 1852 (schwach), 1829 (v, C≡C). - ¹H-NMR (200 MHz, [D₈]THF, -30° C, TMS): $\delta = 5.00 [^{3}J(PH) = 25.2 \text{ Hz}, 2 \text{ H}, \equiv CH], 2.70 (4 \text{ H},$ =CCH₂-), 1.80 (2H, -CH₂-), Alkin; 7.41 (15H, PPh). - ¹³C-NMR (100.6 MHz, $[D_8]$ THF, -30° C, TMS): $\delta = 112.3 [^2 J(PC) =$ 15.2 Hz, 2C, \equiv C-], 88.1 [2C, ¹*J*(CH) = 227, ²*J*(PC) = 12.4 Hz, \equiv CH], 29.55 [1C, ⁴*J*(PC) = 9.6 Hz, -CH₂-], 18.8 [2C, ³*J*(PC) = <1 Hz, \equiv C-*C*H₂-], Alkin; 137.2 (s, 3C, C_{ipso}), 134.6 (d, 6C, C_{or}-_{tho}), 130.0 (d, 3C, C_{para}), 128.9 (d, 6C, C_{meta}, Ph). - ³¹P-NMR (162 MHz, $[D_8]$ THF, -30° C, wäßrige H₃PO₄): $\delta = 49.3. - C_{25}H_{23}$ NiP (413.1): ber. C 72.68, H 5.61, Ni 14.21, P 7.50; gef. C 71.92, H 5.76, Ni 14.59, P 7.67.

- K.-R. Pörschke, Y.-H. Tsay, C. Krüger, Angew. Chem. 1985, 97, 334; Angew. Chem. Int. Ed. Engl. 1985, 24, 323; K.-R. Pörschke, Angew. Chem. 1987, 99, 1321; Angew. Chem. Int. Ed. Engl. 1987, 26, 1288.
- [2] K.-R. Pörschke, J. Am. Chem. Soc. 1989, 111, 5691.
- [3] K.-R. Pörschke, R. Mynott, K. Angermund, C. Krüger, Z. Naturforsch., Teil B, 1985, 40, 199.
- [4] W. Bonrath, K.-R. Pörschke, G. Wilke, K. Angermund, C. Krüger, Angew. Chem. 1988, 100, 853; Angew. Chem. Int. Ed. Engl. 1988, 27, 833.
- ^[5] B. Proft, Dissertation, Universität Düsseldorf, 1993
- [6]
- S. Michaelis, Dissertation, Universität Bochum, **1991**. B. Proft, K.-R. Pörschke, F. Lutz, C. Krüger, *Chem. Ber.* **1991**, [7] 124. 2667
- Dieses Prinzip ist auch auf trigonal-planare Palladium(0)-^[8a] und Platin(0)-Komplexe^[8b] anwendbar: ^[8a] J. Krause, Disserta-tion, Universität Düsseldorf, **1993**. ^[8b] K.-J. Haack, ge-[8] plante Dissertation.

- ^[9] Der unerwartete Farbunterschied zwischen 1 und 2, insbeson-
- der die rote Farbe von 1, sind noch nicht erklärt. ^[10] Freies 1,6-Heptadin: IR (KBr): $v(≡C−H) = 3298 \text{ cm}^{-1}$, $v(C≡C) = 2119. − \text{NMR: } \delta(H) = 2.21 (2H, ≡CH), 2.27 (4H,$ $<math>≡CCH_2−), 1.67 (2H, −CH_2−); \delta(C) = 83.6 (2C, ≡C−), 69.9$ [¹J(CH) = 247.5 Hz, 2C, ≡CH], 28.6 (1C, −CH₂−), 17.9 (2C, $=CCH_2−), 1.67 (2H, −CH_2−); \delta(C) = 8.6 (1C, −CH_2−), 17.9 (2C, −CH_2−))$
- $= CCH_2).$ ^[11] In den ¹H-NMR-Spektren der Komplexe L-Ni(HC=CH)_2 [L = PMe_3, PEt_3^[2], PPh_3, P(OPh)_3^[5], P(OC_6H_3Me_2)_3^[6]] beobachtet man für die Ethin-Signale bei niedrigem Feld (8 ca. 7.0) eine kleine Kopplung ³/(PH) ca. 2–8 Hz und für die Ethin-Signale bei höherem Feld (δ ca. 5.8) eine größere Kopplung ³/(PH) ca. 27–35 Hz. Der Vergleich mit den 1,6-Heptadiin-Komplexen 1 und 2 legt nahe, daß die Signale bei höherem Feld mit der größeren Kopplung ³/(PH) von den "äußeren" Ethin-Brotonen honvorgerufen werden och des die hei tieferem Feld Protonen hervorgerufen werden, so daß die bei tieferem Feld liegenden Signale mit der kleineren Kopplung den "inneren" Ethin-Protonen zuzuschreiben wären. Somit kann anhand von 1, 2 eine Zuordnung der ¹H-Ethin-Signale in L-Ni(HC=CH)₂-Komplexen getroffen werden.
- ^[12] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58121, der Autoren und des Zeitschriftenzitats angefordert werden.
- [13] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
 [14] Drein, R. Taylor, J. (19) at distribute for 1.6 Hontadiin argibt.
- ^[14] Für das in 1 an Nickel(0) chelatgebundene I,6-Heptadiin ergibt run das in Fan Nickel(0) chelategebindene 1,6-rieptadin elegiot sich – im Vergleich zum 1,6-Heptadien-Komplex (Ph₃P)Ni-(η^2, η^2 -C₇H₁₂) – bei gleichem Winkel D1–Ni–D2 und kürze-ren Bindungen Ni–C eine geringere "Spannweite" des 1,6-Diins (D1–D2 3.25 Å) als für das 1,6-Dien (3.37 Å). Diese "Spannweite" des quasi spannungsfrei chelatisierend koordinierten 1,6-Diins stimmt zufällig mit dem Wert des chelatgebunde-

nen 1,5-Hexadiens in { $(Me_2C_6H_3O)_3P$ }Ni $(\eta^2,\eta^2-C_6H_{10})$ (3.25 Å) in dessen gleichfalls C_s -symmetrischer, aber gespannter Bindungsform überein^[6].

- ^[15] Ausgewählte 1,6-Heptadiin-Reaktionen: ^[15a] Cyclotrimerisierung [Reppe-Katalysator (Ph_3P)₂Ni(CO)₂, 80°C] zu 1,3-Di-5-in-danylpropan (20–25%) sowie Polymerenbildung; E. C. Colthup, L. S. Meriwether, J. Org. Chem. **1961**, 26, 5169. – (1^{550}) Stöchiometrische Umsetzung mit (CO)₅Cr=C(OMe)(Me) (70°C, 6 h) zu 6-Methyl-5-indanol; W. D. Wulff, R. W. Kaesler, G. A. Peterson, P.-C. Tang, J. Am. Chem. Soc. **1985**, 107, 1060; Y.-C. Xu, W. D. Wulff, J. Org. Chem. **1987**, 52, 3263. – ^[15e]CpCo(CO)₂-katalysierte Cooligomerisation mit Nitrilen zu anellierten Pyridinen und mit Isocyanaten zu 2,5,6,7-Tetrahydro-2-pyridin-3-onen; A. Naiman, K. P. C. Vollhardt, Angew. Chem. 1977, 89, 758; Angew. Chem. Int. Ed. Engl. 1977, 16, 708; R. A. Earl, K. P. C. Vollhardt, J. Org. Chem. 1984, 49, 4786. – [15d] Cyclisierung mit CO und MeOH (Pd/C-KI-Katalysatorge-micsch um chine Eine Chine and Heiler (Pd/C-KI-Katalysatorgemisch) zu einem Fünfring mit zwei benachbarten exo-=CH(CO₂Me)-Gruppen; G. P. Chiusoli, M. Costa, P. Pergreffi, S. Reverberi, G. Salerno, *Gazz. Chim. Ital.* **1985**, *115*, 691. – $[^{15e]}$ Ein- und zweifache Hydrocyanierung und Hydrierung { $[Ni(CN)_4]^2$ -/KCN/NaBH₄/H₂O-Katalysator} zu 2-Methylhep- $\{[NI(CN)_{4}]^{-1}$ (NCN) (NaBH4/H20-Natarysator) / 2a 2-internymetry tannitril bzw. 2,6-Dimethylheptandinitril; T. Funabiki, H. Sato, N. Tanaka, Y. Yamazaki, S. Yoshida, J. Mol. Catalysis 1990, 62, 157. – $[^{15f]}$ Cooligomerisation mit CO₂ [Ni(0)-Katalysatoren] zu monomolekularen und polymeren 2-Pyronen; T. Tsuda, S. Morikawa, T. Saegusa, J. Chem. Soc., Chem. Commun. 1989, 9; T. Tsuda, K. Maruta, Y. Kitaike, J. Am. Chem. Soc. 1992, 114, 1498. – $^{[15g]}$ Ru₃(CO)₁₂-katalysierte Cyclisierung mit 2CO (140°C, 20 h) zu einem Catechol-Derivat; N. Chatani, Y. Fukumoto. T. Ida, S. Murai, J. Am. Chem. Soc. 1993, 115, 11614.
- Nickel(0)-vermittelte Cyclisierungsreaktionen von substituier-ten 1,6-Diinen (Review): K. Tamao, K. Kobayashi, Y. Ito, Syn-[16] lett 1992, 539.

[357/93]